nhcril.un_l_‘__i;"':}.‘!.‘s‘_‘.‘!_ﬂ"‘i‘ cornerstones of object-oriented I"”‘E‘E"f‘"““i"}' bpca
- m\‘s:fﬂj‘ creation of hierarchical classifications. Using inheritance, ;’Uu c' Use jy
::,:.ﬁ;;-al1‘!6;;5}_!1.\! detines traits common to a set of related items. This clnqjll fr(‘dh.‘
be inhented by ~other, more spcci[u; cln_sscs, cach adding those things that are :
=t In the terminology of Java, a class that is ilthm;_ijpgl is called a superclass, The I
Joes the inheriting is called ﬂlﬂ;::_«'s. Therefore, a subclass is a specialized v, 55 thy,
inherits all of the instance variables and methods defined by the Slon o,

stl[‘ﬁ‘!’f_lﬁ_?‘ﬁ- It e
':.-'{,pcrc[ass'h'mi adds its own, unique elements.

-

unj

. —————
i T T P Sl S R
e e A S A 0
e nT— e

Inheritance Basics

To inherit a class, you simply incorporate the definition of one class into another

ds key}vord. To see how, let’s begin with a short example. The

by using the exten
following program creates a superclass called A and a subclass called B. Notice hgy,

the keyword extends is used to create a subclass of A.

ki]

// A simple example of inheritance,

// Create a superclass.
class A { '
int i, Js
void showij () { _
System.out.println(“i and j: " + 1 +'"
} .

%)

}

// Create a subclass by extending class A.
class B extends A {
int k;

void showk () {
System.out.println("k: " + k);

} {
void sum() { [])

System.out,.println("i+j+k: " + (i+j+k));

class SimpleInheritance {
public static void main(String args[]) {
A superOb = new A();

Scanned with CamScanner

Chapter 8: Inheritance 191

g subOb = new B();

7/ The superclass may be ik S
SuperOb.i = 14):

superOb.j = 20;
syst:em.out.prmtln(-contents ”)
superob.showij[); superQb:
syscem.out.println():

by itself.

|

/* The subclass has access to all ‘sublie "eﬂberé of

ijts superclass. */
SubOb.i &= 473
subOb.j = 8;
subOb.k = 9;
system.out.println("Contents of subOb: ");
subOb.showij () ;
subOb.showk () ;
system.out.println();

gystem.out.println("Sum of i, j and k in subOb:");
subOb.sum() ;

The output from this program is shown here: 'T
tp prog ok

contents of superOb:
i and j: 10 20

Contents of subOb:
iand j: 7 8
k: 9

Ssum of i, j and k in subOb:
i+j+k: 24

the subclass B includes all of the members of its superclass, A. This

As you can see,
call showij(). Also, inside sum(), i and j can be

is why subOb can access i and j and
referred to directly, as if they were part of B.

Scanned with CamScanner

19>
2 Java™ 2; The Complete Reference

also a completely independent,
lass for a subclass does not mean that the superclasg

ass can be a superclass for another subclass,
rclass is shown here:

Even though A is a superclass for B, it is

stand-alone class. Being a superc

cannot be used by itself. Further, a subcl
The general form of a class declaration that inherits a supe

class subclass-name extends superclass-nanie (
% // body of class

E\'l)

You can only specify one supercl

support the inheritance of multiple superc

from C++, in which you can inherit multip

hierarchy of inheritance in which a subclass

However, no class can be a superclass of itself.

ass for any subclass that you create. Java does not
lasses into a single subclass. (This differs

le base classes.) You can, as stated, create a
becomes a superclass of another subclass,

Member Access and Inheritance
Although a subclass includes all of thm_lg_egs_qt its superclass, it cannot access those
ave been declared as private. For example, consider

members of the superclass that h
the following simple class hierarchy:
/* In a class hierarchy, private members remain

private to their class.

This program contains an error and will not

compile.
*f
// Create a superclaés.

class A {
int i; // public by default

private int j; // private to A

void setij(int x, int y) {
i = %;
j o=y

// A's j is not accessible here
class B extends A { .
int total;

Scanned with CamScanner

vnaprer -

void sum() |
total = i + J; 7/ ERROR, {1 is not accessible hr-rf‘,

)

class AcCcess {
public static void main(String args(]) |
B SubOb = hew B_ ‘) :

subOb.setij (10, 12);

subOb.sum() ;
System.out.println("Total is " + subOb.total)j;

e the sum() method

This program will not compile because the reference to j insid o - cssible by

of B causes an access violation. Since j is declared as private, it is O
other members of its own class. Subclasses have no access to it.

mmay(A class member that has been declared as private will remain private to its class. It is not
m accesstble by any code outside its class, including subclasses.

A More Practical Example

Let’s look at a more practical example that will help illustrate the power of inheritance.
Here, the final version of the Box class developed in the preceding chapter will be
extended to include a fourth component called weight. Thus, the new class will contain
a box’s width, height, depth, and weight.

// This program uses inheritance to extend Box.
class Box |

double width;

double height;

double depth;

// construct clone of an object

Box (Box ob) { // pass object to constructor
width = ob.width;
height' = ob.height;

Scanned with CamScanner

94 Jaya™ 2: The Complete Reference

depth = ob.depth;
} L

// constructor used when all dimensions specified
pox (double w, double h, double d) |(

width = w;

height = h;

depth = d;

// constructor used when no dimensions specified

pox() |
width = -1; // use -1 to indicate
height = -1; // an uninitialized

depth = -1; // box
)

// constructor used when cube is created
Box (double len) {

width = height = depth = len;
)

// compute and return volume

double volume() {
return width * height * depth;

f
/] Here, Box is extended to include weight.
class BoxWeight extends Box (

double weight; // weight of box .

// constructor for BoxWeight
BoxWeight (double w, double h, double d, double m) {

width = w;
height = h;
depth = d;

weight = m;

Scanned with CamScanner

Chapter 8: Inheritance

jass DemoBoxWeight ¢

public static void mnin(ru_,[“rl
oxWeiaght myb : 4 Aargas(])
poxWelq yboxl Nnew Ih.xph.|”,” (10 i 3
cwi e L r = * 0, g 4. d
PoxWelght mybox2 - Ilnpxlnqx}h-irir . . 3y IRnI%]
double vol; b2, 3, 4, 0.076);
vol = myboxl.vo lume () 2

System.out.printin(volyme 4f

System.out.printlin(yej }
*1ght of , R : sight)
System.out.println() . whoxl ig + myboxl.welq

myboxl {s = 4+ vol):

vol = mybon.volumel};
System.out.println(-"
System.out.println(

Volume of mybox2 is * + vol):

"Weight of mybox2 is * 4+ mybox2.weight):

The output from this program is shown here:

Volume of myboxl is 3000.0
weight of myboxl is 34 .3

volume of mybox2 is 24.0
Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight

component. It is not necessary for BoxWeight to re-create all of the features found in
Box. It can simply extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that
defines the attributes common to a set of objects, it can be used to create any number
of more specific subclasses. Each subclass can precisely tailor its own classification. For
example, the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.
class ColorBox extends Box {
int color; // color of box

ColorBox (double w, double h, double d, int c¢)
width = W;

Scanned with CamScanner

A7

1
9 Java™ 2: The Complete Reference

heiaght 11
depth = d;

color = C}

rclass that defines the general aspects of

created a supe
alized classes. Each subclasg

inherited to form speci

Remember, once you have
os. This is the essence of inheritance.

an object, that superclass can be
simply adds its own, unique attribul

r
A Superclass Variable Can Reference a Subclass Object
assigned a reference to any subclass deriveq

ariable of a superclass can be
ass. You will find this aspect of inheritance quite useful in a variety of

sider the following:

A reference v
from that supercl
situations. For example, con

class RefDemo {
public static void main(string args(]) ' {

BoxWeight weightbox = new BoxWeight (3, 5, 7, 8.37);
Box plainbox = new Box () ;
double vol;

vol = weightbox.volume () ;
System.out.println("Volume of weightbox is "

System.out.println("Weight of weightbox is
weightbox.weight) ;,

+ vol);

n +

System.out.println();

// assign BoxWeight reference to Box reference

plainbox = weightbox;

vol = plainbox.volume(); // OK, volume () defined in Box
System.out.println("Volume of plainbox is " + vol);

2 3
/* The following statement is invalid because plainbox

3 does not define a weight member. */
System, i "Wei :
ystem.out.println("Weight of plainbox is " + plainbox welght)

Scanned with CamScanner

‘ 4
Inheritance

Chapter 8:

i x is a reference ; _
fleres wcli_g‘héli,s:clBuxWeigl;jiLi :(: llolx\?lmghl objects, and plainbox is a reference to
\ objects : 8 a subclass of Boy, it is permissible to assign jainbox
o,fcnmcc to the weightbox object. permissible to assign P
Itis im}"“:l‘“'lt lt’-’ tl‘.l:d.C;'Sl.and that it is the type of the reference variab
e of the object t mt lire f)lql to—that determines what members can be
i, when a refclcncte‘ 0 ﬂl Sltl class object is assigned to a superclass reference variable,
ouwill have access only ! 0 ll}oso parts of the object defined by the superclass. This is
why Plamb‘?" Cla_“ tﬂCliE:S‘b‘Welght even when it refers to a BoxWeight object. If you
think about it, this .m:';_ lua sense, because the superclass has no knowledge of what
adds to it. This is why the last line of code in the preceding fragment is

, subclass . :
mmmentcd out. Itis n(?t possible for a Box reference to access the weight field,
pecause it does not define one.

Although the Precedi_ng may seem a bit esoteric, it has some important Pl'ﬂctical
oli cations—two of which are discussed later in this chapter.

Je—not the
accessed. That

ap

-
T D e i e A s S S

using super

In the preceding examples,
efficiently or as robustly as they could have been. For exampl
BoxWeight explicitly initializes the width, height, and depth
does this duplicate code found in its superclass, which is ineffi
a subclass must be granted access to these members. However, there will be times
when you will want to create a superclass that keeps the details of its implementation
1o itself (that is, that keeps its data members private). In this case, there would be no

o directly access or initialize these variables on its own. Since
ava provides

classes derived from Box were not implemented as
e, the constructor for

fields of Box(). Not only
cient, but it implies that

way for a subclass t
encapsulation is a primary attribute of OOP, it is not surprising that J

a solution to this problem. Whenever a subclass needs to refer to its immediate

superclass, it can do so by use of the keyword super.
super has two general forms. The first calls the superclass’ constructor. The second

is used to access a member of the superclass that has been hidden by a member of a

subclass. Each use is examined here.

Using super to Call Superclass Constructors
A subclass can call a constructor method defined by its superclass by use of the

following form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in
the superclass. super() must always be the first statement executed inside a
subclass’ constructor,

Scanned with CamScanner

198 Java™ 2: The Complete Reference

To see how super() is used, consider this improved version of the
.I

BoxWeight() class:
// BoxWeight now uses super to initialize its Box attributeg, .
i,

' class BoxWeight extends Box {
double weiaght; // weight of box

// initialize width, height, and depth using super ()
{

BoxWeight (double w, double h, double d, double m)
super (w, h, d); // call superclass constructor

weight = m;

}

Here, BoxWeight() calls super() with the parameters w, h, and d. This causes th
Box() constructor to be called, which initializes width, height, and depth using thesz
values. BoxWeight no longer initializes these values itself. It only needs to initialize th
ue to it: weight. This leaves Box free to make these values private if deSiredE
mple, super() was called with three arguments. Since)

constructors can be overloaded, super() can be called using any form defined by the
s. The constructor executed will be the one that matches the arguments, For

superclas
example, here is a complete implementation of BoxWeight that provides constructors
nstructed. In each case, super() is called using

for the various ways that a box can be co
the appropriate arguments. Notice that width, height, and depth have been made

private within Box.

value uniq
In the preceding exa

// A complete implementation of BoxWeight.

class Box {
private double width;

private double height;
private double depth;

// construct clone of an object
Box (Box ob) { // pass object to constructor
o/.

width = ob.width; 7
height = ob.height;/
depth = ob.depth;//

}

Scanned with CamScanner

WY

Chapter 8: [pheritance

;) constructor used when aj) dimensions specified
noxldouh10 w, double h, doub)e d) | e

width = Wi
height = hi
depth = di

)

/! constructor used when no dimensions specified

pox ()
width = =13 // use -1 to indicate
height = -1; // an uninitializeg

depth = -1; // box
}

// constructor used when cube is created
pox (double len) {
width = height = depth = 1len;

}

// compute and return volume

double volume() {)
return width * height j/ﬁepth;

} 4

}

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object

BoxWeight (BoxWeight ob) { // pass object to constructor
super (ob) ;
weight = ob.weight;

}

// constructor when all parameters are specified
BoxWeight (double w, double h, double d, double m) {
super (w, h, d); // call superclass constructor
weight = m; :

}

Scanned with CamScanner

F‘M fava™ 2: The Complote Reference

A/ defanlt constructor
BoxWeight ()

super () ;
welight = ~1;

)

7 constructor
BoxWoight(doubl
super (len) ;
weight = m;

used when cube is created
e len, double m) {

}

class DemoSuper {

public static void main(String args([]) {

BoxWeight myboxl = new BoxWeight (10, 20, 15,.34.3):

BoxWeight mybox2 = new BoxWeight (2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight (); // default
BoxWeight mycube = new BoxWeight (3, 2);

BoxWeight myclone = new BoxWeight (mybox1) ;
double vol;

Pk AT

vol = myboxl.volume() ;
System.out.println("Volume of myboxl is " + vel) ;

System.out.println("Weight of myboxl is " + myboxl.weight);
System.out.println() ;

vol = mybox2.volume() ;
System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);
System.out.println();

vol = myboxBlvolume();
System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " + mybox3 .weight) ;
System.out.println(); .

vol = myclone.volume () ; :
System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of myclone is " + myclone.weight);
System,out.println();

Scanned with CamScanner

201

Ui g
e
fane

chapter B¢ faher!
\
1 'il\Vl'lIl!t‘.VU]I1I|1|‘[): |
o h |

v o oul . pt IntIn("Volume of ycube o "ot yorl) g " e »
::Y:‘ . : : " " et e (&) i
gyl em.out . Pl intIn("Welaht of wmycabe 1o vy cul {

"W-“ em. oul printin);

)

i F..-ggmn\ generates the following output:
This
of mybox1 is 3000.0

ne :
yphul myboxl is 34.3

weight of
box2 is 24.0

1ume of my . .
:siqht of mybox2 is 0.076
yolume of mybox3 Ls 31 .0
weight of mybox3 is -1.0
volume of myclone is 3000.0
weight of myclone is 34.3
yolume of mycube is 27.0
weight of mycube is 2.0

pecial attention to this constructor in BoxWeight():

Pay s

;’ // construct clone of an object
| poxWeight (BoxWeight ob) { // pass object to constructor
' guper (ob) ;

weight = ob.weight;
)

Notice that super() is called with an object of type BoxWeight—not of type Box.
This still invokes the constructor Box(Box ob). As mentioned earlier, a superclass
variable can be used to reference any object derived from that class. Thus, we are able
to pass a BoxWeight object to the Box constructor. Of course, Box only has knowledge
of its own members.

Let's review the key concepts behind super(). When a subclass calls super(), it is
calling the constructor of its immediate superclass. Thus, super() always refers to the
superclass immediately above the calling class. This is true even in a multileveled

Scanned with CamScanner

202 Java™ 2: The Complote Reference

hierarchy. Also, super() must always be the first statement executed inside a Subl g,

constructor.

A Second Use for super
The second form of super acts somewhat like this, except that it always refers t
the superclass of the subclass in which it is used. This usage has the following

general form:

super.memtber

Here, member can be either a method or an instance variable.
This second form of super is most applicable to situations in which member namq,
of a subclass hide members by the same name in the superclass. Consider this simp|e

class hierarchy:

]

// Using super to overcome name hiding.

class A {
int i:

}

// Create a subclass by ex}:ending class A.

/

class B extends A { /
int i; // this i hidesjthe i in A

B(int a, int b) {
super.i = a; // 1 in A
i=b; // 1iin B

}

void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + 1);

)

class UseSuper {'
public static void main(String args[]) {
B subOb = new B(1l, 2);

annhnh chnuwrf) .

Scanned with CamScanner

Chapter 8: faheritance

This program displays the fﬂ”nwing.

-

i in :Jur)(:r(_'ldf-.r:: i
{ in subclass: 2

ough the instance varijabl.. : :
deﬁﬁ.glin ﬁl:c superclass, A”r}:’?})ukv:i;?: hides the in A, super allows access to the i
af"hjddeﬂ by a subclass. “7Cr Super can also be used to call methods that

fgg/a?a;tlng a Multilevel Hierarchv
Up to this point, we have been using « y
,uperclass and a subclass. However, you ¢

layers of inheritance as you like. As mentioned, it is perfectly acceptable to use a

subclass as a superclass of anothcr.&r_examp]g' given thre _g,, "y S_‘;SS salied &. B,
@'('i_,C_,_,C_Cﬁnh_e a S_l_.lbf:lass f’f B, which is 2 subclass of A. When ihis va_pde_Of situation
_gc__grujs,t'ﬂ‘-’-h .‘:iUbC]EISS inherits all of the traits found in all of its superélasseﬁ. In this

ase, C inherits all aspects of B and A 4To sce how a multilevel hierarchy can be useful,
consider the following program. In it, the subclass BoxWeight is used as a superclass to
create the subclass called Shipment. Shipment inherits all of the traits of BoxWeight
and Box, and adds a field called cost, which holds the cost of shipping such a parcel.

// Extend BozVWleight to include snipping cozsts.

// Start with Boxz.
class Box (
private double wiarh;
private double height;
private double depth;
// construct clone of an object
Box (Box ob) { // pass object Lo COnSTLIucLor
width = ob.width;
height = ob.height;
depth = ob.depth;

11 Aimencigns specified
used when all dimensions speci 3

// constructor
Box (double w,
width = w;
height = h;

double h, double G)

Scanned with CamScanner

B |

o

'm'

,:1‘.{. pach :.-:..I_.._,_ -

m '“”m 2: The Complete Reference

’ dopth d;

)

// constructor used when no dimensions specified

Box () |
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created

Box (double len) {
width = height = depth = len;

// compute and return volume

double volume() {
return width * height * depth;

// Add weight.
class BoxWeight extends Box {
double weight; // weight of box

// construct clone of an object
BoxWeight (BoxWeight ob) { // pass object to constructor

super (ob) ;
weight = ob.weight;

}
// constructor when all parameters are specified

BoxWeight (double w, double h, double d, double m) {
super(w, h, d); // call superclass construct:g;'

weight = m;

<

// default constructor

BoxWeight () {
super () ;
weight = -1;

Scanned with CamScanner

Chapter 8:

3 *EOr use
) construc d when cype le w
9 Cdreated

Boxwejght(double len, double m)
guper (len);

weight = M

)

/) Add shipping costs
class shipment extends BoxWeight {

L e

double costi

// construct clone of an object
shipment (Shipment ob) { // pass object to constructor

super (ob) ;
cost = ob.cost;

}

// constructor when all parameters are specified
shipment (double w, double h, double 4, -
double m, double c) ({
super (w, h, d, m); // call superclass constructor ,ﬂ,i
) .

cost = C;

// default constructor
Shipment () { J/,f//
super () ;
cost = -1;

}

// constructor used when cube is created
Shipment (double len, double m, double c) {
super(len, m); '
cost = ¢C;

class DemoShipment {
public static void main(String args([]) |

Shipment shipmentl =

Scanned with CamScanner

fnheritanceé

2

erence
Jaya™ 2: The complele Ref

. f { A1)
Cow Shipment (10, 20, 15, 10, 3 i
' T
o ment ghipmente - ' : A
ghipm e Shipment {2, 1, 4, 0.76, 1.2B);
double vol;
vol = ::hipmcnrl.vu]umr!(!: . -
3 m.out 1\1'1111111("'\"'”]1”"" of shipmentl 18
s o . - N
ByRE! of shipmentl 1s o

mu_mL.print]n("h‘(‘igln, .
¢ shipmentl.wel ght) ;

%
% 4

Syste

gystem,out .println(nshipping cost:

System.out .println():

vol = shipmcnt2.volume(}; . -
System.out.printlnt"\folume of shipment2 1s
rintln("Weight of shipment2 is "

System,out.p ;
+ shipment2.weight);

System.out.println{“Shipping cost: §"

The output of this program is shown here:

Volume of shipmentl is 3000.0
Weight of shipmentl is 10.0
Shipping cost: $3.41 '

Volume of shipment2 is 24.0
Weight of shipment2 is 0.76

Shipping cost: $1.28

vol);

shipmentl.cost)

+ vol);

+ shipment2.cost);

Because of inheritance, Shipment can make use of the previously defined classes of

Box and BoxWeight, adding only the extra information it needs for its own, specific

application. This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the

constructor in the closest superclass. The super() in Shipment calls the constructor

in BoxWeight. The super() in BoxWeight calls the constructor in Box. In a class
hierarchy, if a superclass constructor requires parameters, then all subclasses must pass
those parameters “up the line.” This is true whether or not a subclass needs parameters

of its own.

Scanned with CamScanner

d

.

Chapter B: {nheritance

i the preceding program, i

ament, is shown all in one fi1. :
S’Ilf l(‘flh i T“ITS s ﬁll- your convenience H!”I{. In ’”{!rl, 1]

sses could have been placed i .
(.m;.;m!c files is the norn,: ;t({:tt’r’;!f” el own files and compited separately. 11 f
L ' ieexception, iy creating class hierarchics.

“ihen Constructors Are catied

when 2 class hierarchy is created, ip wh

cn (1 = 4 "
tire clusg hierarchy, including Box, BoxWeight. and
: : Il three

ct, using

at order are the constructors for the classes that

qake Up Ehe l}terarchy called? For example, given a subclass called B and a superclass
alled A, s A’s constructor called !Jefm-e B's, or vice versa? The answer is that in a class
pierarchy’ constructors are called in order of derivation, from superclass to subclass.
her, since super() must be the first statement exccuted in a subclass’ constructor,
s order is the same whether or not super() is used. 1 super() is not used, then the..

default or parameterless constructor of each superclass will be executed. The following
--"'gr'éfn illustrates when constructors are Sheaitad: i :
-—__'_,---'-—-"_—-_—_ = T S e : 2

/) Demonstrate when constructors are called.

// Create a super class.

class A {
A() {
System.out.println("Inside A's constructor.");
= B
}

// Create a subclass by extending class A.
class B extends A {

B() |
System.out.println("Inside B's constructor."):

// Create another subclass by extending B.
class C extends B {
C() {
System.out .println("Inside C's constructor.");

class CallingCons {
public static void main(String args[]) (

Scanned with CamScanner

207

he Complete Reference

208 .Javnm 2¢'7

Cc e = new C():

The output from this program is shown here:

Inside A’'s constructor
Inside B's constructor
Inside C's constructor

the constructors are called in order of derivation.
kes sense that constructors are executed in order of

As you can see,
s no knowledge of any subclass, any initializatiop, it

If you think about it, it ma

derivation. Because a superclass ha
needs to perform is separate from and possibly prerequisite to any initialization
\/

performed by the subclass. Therefore, it must be exeeated first.

-

___“

| Method Overriding
JolssHiearchy. e method in ubclass has the same name and type
signature as a method in its superclass, then the method in the subclass is saidto
%@Mﬂws'wmbﬂ%w@m
ithin a subclass, it will always refer to the version of that method define e
fined by the superclass will be hidden. Consider

subclass. The version of the method de

the following:
// Method overriding.
class A {
A(int a, int b) { \ [/U \,VI,‘
1 = a; \-J"L :
j = b; kr \}Q
} VAl
\ \ﬁk
Oh o
N o
L

// display i and j
void show() {

System.out.println("i and j: " + 1 4+ " " + j);

class B extends A {

Scanned with CamScanner

L

Chapter 8: |Inheritance 20!

int ki 51
¥
p(int a, int b, int ¢ (Y
super (a, b);
k= &}

)

e e TN
7 T

e A

// display k - this overri
r
void show() { rides show() in a

System.out.println("k; » , k)
) H

}

class Override ({

public static void main(styj
in
B subOb = new B(1, 2, 3), g args[]) {

subOb.show(); // this calls show() in B
}

The output produced by this program is shown here:

ks 3 [

When '_show()_i_t?:_'_lIEQMan object of type B, the version of show() defined
_»_q;t}ﬁn B 1s used. H}at is, the version of show() xSide B Overrides the version
declared in A. T s ¥ NP e

you wish to access the superclass version of an over‘ridden function, you can do
so by using super. For example, in this version of B, the superclass version of show() is
invoked within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = ¢c;

————————

Scanned with CamScanner

< LU

jJava ' L« 1ne vomplele neijerenve

void show() (
super.show(); // this calls A's show()

System.out.println('k: " + Kk):
)

If you substitute this version of A into the previous program, you will see the
following output:

i and jr 1 2
k: 3

Here, super.show() calls the superclas{% version of show(). _

Method overriding occurs only when the names and the type signatures of ty,
methods are identical. If they are not, then the two methods are simply overloa
example, consider this modified version of the preceding example:

e two
ded. Ry,

// Methods with differing type signatures are overloaded - not
// overridden.
class A

int i, Jj;

A(int a, int b) {
i = a;
i = b;
) : Vy

// display i and 3 e
void show() { e) .
System.out.println("i and j: "4 i + " " & '3);

5¥

// Create a subclass by extending class A.
class B extends A (
int k; N

B(int a, int b, int c) { '

~super (a, b);
k =¢c;

Scanned with CamScanner

Fw oW -

CEhapter w:

1aes Override |

L &

R
bl 1¢ afa 11
pubi
R :‘[]1\"‘1‘ = new R
gubOb.show ("This is k: =),
*)i thia calls how i) B

subOb.show (B / this

The output produced by this program is shown here:

Ky 2
2

4

and

The version of show() in B takes a string p
different from the one in A, which takes no parame

name hiding) takes place.

.

his 1

Lt = |
i e

. 0

arameter. This makes its type signature
ters. Therefore, no overriding (or

7

o e e . e St

e e —

-

|
|
i
!
|

Dynamic Method Dispatc
While the exam ples in the preceding section demonstrate the mechanics of method
overriding, they do not show its power. Indeed, if there were nothing more to method
overriding than a name space convention, then it would be, at best, an interesting
auriosity, but of little real value. However, this is not the case. Method overriding
forms the basis for one of Java's mast powerf ul concepts: dyamic method dispatch.
Dynamic method I_Ii;;_pajch is the mechanism by ‘_"l‘j}i’l_ﬂ_s;:_'__l_l_&‘ an un.:rrido,]sw_u_tbml

esolve ime, rather than compile time. Dy namic method dispateh is
) e e —— ey 2 5
important because this 1s how Java unptcn‘lvnﬁftuu—tgumpulymnrphl’s’:ﬁ.
' erence variable can

Let's begin by restating an important principle: a superclass ref
this fact to resolve calls to overridden methods at

refer to a subclass object. Java uses ;
run time. Here is how. When an oveérridden mclh{ul is called through a su_pcrclass-
ersion.nfthat method to execute based upgn the

ference, Java determines ich v

Scanned with CamScanner

e

212 1ava™ 2: The Complete Reference

the call oceurs. Thus, this detery,, .

» s fime

. 1 being referr A toat the ti : o Na
ype of the object In \\ﬁwﬂ difforent types of llh)l_‘l‘f.'l are r.(!f’t‘l'ﬂ‘d to, dlff(.rfln' u“rqif"n
her words, it is the type of the objecy hm‘nm

“simade al run time. - -
of an n\"l'l‘l’ilfdl"‘ ““"hm! will be callgd. In :“ letermines which v
ol W the type of the reference variable) "‘ﬂ.' aewt i . ersion of
rberyed 10 (M herefore, if a gul)(‘l‘(‘l{l‘iﬂ containg g mMethe t
a

; . Al be exacuted.

‘\'l.‘l'l'lddi‘-“ ﬂ‘ltlhﬂl' wi : 1 { S . iects are referred 10 ¢
"s. werridden by a subclass, then when different types of nblﬁdl : ferred tH 'hrr.ui{h
!_"1 h"‘. ﬁ-f;-rm'u‘i' \'l‘":iﬂ]‘h‘- d"fﬁ.“i"“ versions of the method are executed
A superchi E . 2
\ l'h'n" is an example that illustrates dynamic method dispatch:

pynamic Met hod Dispatch

'!rl.‘“-:- .\ \
vold C('Il lml‘{;f {)
system.out .print In("Inside A's callme method");

}

class B extends A {
override callme()

void callme() |
m.out .println("Inside B's callme method") ;

Syste

’
i

)

class C extends A {
/) override callme()

void callme() { 1
System.out.prinEln(_'iInside C's callme method");

]

}

class Dispatch {
public static void main(String args([]) {

// object of type A

A a = new A();
B b = new B(); // object of type B

Cc=newCl);.// object of type C. .

A r; // obtain a reference of type A '

r = a; // r refers to an A object
r.callme(); // calls A's version of callme

.r'=b; // r refers to a ‘B object
rocallme(); // calls B's version of callme

p—

Scanned with CamScanner

Chapter 8: (pheritance 21
1
¢ o= C: 4 A refers to a C obi ;
1',(?(11 Imel): // calla c'jg \”]. ,]_r,‘ﬂ :
} Inilon of callme
) !
he output from the program is shown here: !
Inside A's callme method |
mside B's callme method
nside c's callme method
This p;olgrargScBrE:I:fis gne Sul?erclass called A and two subclasses of it, called B
and C. SubcC asi ol override callme() declared in A. Inside the main() method,
jects of lypeth , B, and C are declared. Also, a reference of type A, called r, is declared.
The program en assigns a reference to each type of object to r and uses that reference to
determined by

callmE_(). AS' the output shows, the version of callme() executed is
e of object being I‘?f&rred to at the time of the call. Had it been determined by the
the reference variable, r, you would see three calls to A’s callme() method.

invoke
the tyP
type of

@ Readers familiar with C++ or C# will recognize that overridden methods in

Java are

similar to virtual functions in those languages.

yhy Overridden Methods? "
Asstated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism 18 essential to object-oriented programmin for one reason: it allows a
255 to specify methods that will be common to all of its derivatives, while

gener
owin, fo define the specific implementation of some or all of those
methods. Qverridden are another way that Java implements the “one

inferface, multiple methods” aspect of polymorphism.
Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater

specialization. Used correctly, the superclass provides all elements that a subclass can
wse directly. It also defines those methods that the derived class must implement on
its own. This allows the subclass the flexibility to define its own methods, yet still

enforces a consistent interface. Thus, by combining inheritance with overridden
methods, a superclass can define t orm of the methods that will be used

he general f
by all of its subclasses.

sy

Scanned wit CaScaer -

214 Jaya™ 2: The Complete Reference "ﬂ

Dynamic, run-time polymorphism is one of the most powerful mechanijg,
L ’ .
t‘bl)j('t‘ll.-l\rit‘l1[l'll doesign brings (o bear on code reuse and robustness, The abili

libraries to call methods on instances of new classes withoyg re

abstract interface is a profoundly powerful too],

NS thy,
ly of |

enisting code C .
M ()n‘\p,“nP
1

while maintaining a clean

Applying Method Overriding
Let’s look at a more practical example that uses method overridin‘g_ The followip,
program creates a su perclass cnllcd.l?igure that stores the dimensions of Varioys
two-dimensional objects. It also defines a method called area() that computes
of an object. The program derives two subclasses from Fig}lre. The first is Rec
and the second is Triangle. Each of these subclasses overrides area() so th

the area of a rectangle and a triangle, respectively.

Ctang],
at it rctUl‘nq

// Using run-time polymorphism.
class Figure (

double diml;

double dim2;

=

Figure (double a, double b) (
diml = a;
dim2 = b;

double area() |
System.out.println("Area for Figure is undefined.");

return 0; . .

) ~ - | .

class-Rectangle extends Figure (
Rectangle(double a, double b) {
super (a, b);

// override area for rectangle
double area() { |

System.out.println("Inside Area for Rectangle.");
return diml * dim2;

class Triangle extends Figure ({

Scanned with CamScanner

qle(doublﬂ a, double p) (
) b))}

wyjan
[xaf (a
Fupef [W

—

cerride area for right triangle
le area(} {

out.printin("Inside Area for Triangle.")i
ml * dim2 7/ 2 '

pi e
douP
s}-st em-.
return di

}

ass rFindAreas { -

public static v01d-main(String args(]) {
rigure f = new Figure(10, 10);
gectangle r = new Rectangle(9, 5);
rriangle t = new Triangle(10, 8);

cl

 rigure figref;

jpfigref = T
system.out.println(“Area is " + figref.areal());

figref = t;
system.out.println("Area is " + figref.area());

figref = f;
System.out.println("Area is " + figref.area());

The output from the program is shown here:

Inside Area for Rectangle.
Area is 45

Inside Area for Triangle.
Area is 40

Area for Figure is undefined.
Area is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is
Possible to define one consistent interface that is used by several different, yet related,

Scanned with CamScanner

‘ Java™ 2: The Complete Reference

oct is derived from Figure, then its area can be

case, if an obj
. . 3
to this operation is the same no matter Wha

types of objects. In this !
) interface

obtained by calling area(). The
type of figure is being used.

Classes
ations in which you will want to define a superclass that declares the
ren abstraction without providing a complete implementation of ever
somelimes you will want to create a superclass that only defines ,
vill be shared by all of its subclasses, leaving it to each subc|ygg

to fill in the details. Such a class -determil‘\es'the r.lature of the n"lethods that the
subclasses must implement. One way this 51t1.1at|0r1 can occur 1s w‘he.n a superclasg
is unable to create a meaningful implementation for a I‘I‘l.(-.‘t.hf)d. This is thc-a case with
the class Figure used in the preceding example. The definition of area(') is simply a
placeholder. It will not compute and display the area -::_'f any _type of object.

As vou will see as you create your Own class libraries, it is not uncommon for g
method to have no meaningful definition in the context of its superclass. You can

ne way, as shown in the previous example, is to

handle this situation two ways. O .
While this approach can be useful in certain

simply have it report a warning message. i
situations—such as debugging—it is not usually appropriate. You may have methods

which must be overridden by the subclass in order for the subclass to have any meaning,

Consider the class Triangle. It has no meaning if area() is not defined. In this case, yoy
subclass does, indeed, override all necessary methods,

want some way to ensure thata
s the abstract method.

Java’s solution to this problem i
You can require that certain methods be overridden by subclasses by specifying
the abstract type modifier. These methods are sometimes referred to as subclasser

responsibility because they have no implementation specified in the superclass. Thus,
a subclass must override them—it cannot simply use the version defined in the

superclass. To declare an abstract method, use this general form:

_| Using Abstract
There are situ
structure of a giv

method. That is,
generalized form that

abstract type name(parameter-list);

As you can see, no method body is present. |
Anv class that contains one or more abstract methods must also be declared

abstract. To declare a class abstract, you simply use the abstract keyword in front of the
class keyword at the beginning of the class declaration. There can be no objects of an
abstract class. That is, an abstract class cannot be directly instantiated with the new
operator. Such objects would be useless, because an abstract class is not fully defined.
Also, you cannot declare abstract constructors, or abstract static methods. Any subclass
of an abstract class must either implement all of the abstract methods in the superclass,

or be itself declared abstract. |
Here is a simple example of a class with an abstract method, followed by a class

which implements that method:

Scanned with CamScanner

Chapter 8: faheritance

o imp e demon: tration of
£ et F et

clamp A |{
vold callme(),

i f }‘.
it pct

al !
absl1af t

,; concrete methods are g | , s mikilibe

I/ LA | L Al Yoywesed i1 abatrac ¢ (:]”/“_(i

void callmetoo() |

Gy 6! em,out.printin("Thig g A concrete mothod.,”);
g - 4 4 LA 4} " ’

class B extendns A |
V‘}ifi f'-l]]nul‘j {

o 3 {i]l.(‘!]l_- '\ 1 " "y .) -
gystem,o printin("B's implementation of callme.”)7:

class AbstractDemo |
pul)]i(.‘ static void main(String args(])) |

B b = new B();

b.callme();
h.callmetool();

}
f class A are declared in the program. As mentioned, it is
int: class A implements a

Notice that no objects o
ptable. Abstract classes can

not possible to instantiate an abstract class. One other po
concrete method called callmetoo(). This is perfectly acce

include as much implementation as they see fit.
Although abstract classes cannot be used to instantiate objects, they can be used

{o create object references, because Java’s approach to run-time polymorphism is
implemented through the use of superclass references. Thus, it must be possible to
create a reference to an abstract class so that it can be used to point to a subclass object.

You will see this feature put to use in the next example.
Using an abstract class, you can improve the Figure class shown earlier. Since

there is no meaningful concept of area for an undefined two-dimensional figure, the
following version of the program declares area() as abstract inside Figure. This, of
course, means that all classes derived from Figure must override area().

// Using abstract methods and classes.

abpstract class Fiqgure |

Scanned with CamScanner

Java™ 2: The Complete Reference

double diml;

doubile dima;

l'imnr‘ltlrml)]v a, double by
diml = a&i

dim2 = by

now an abastract met hod

/J/ area is
abstract double areca();

Rectangle extends Figure {
e a, double Db) {

class
Rectangle(doubl

super (a, b):
}

// override area for rectangle

double areal() {
System.out.println(
return diml * dim2;

nInside Area for Rectangle."):

}

class Triangle extends Figure {
Triangle (double a, double o 1000
super (a, b).;
}

// override area for right triangle

double area() {
System.out.println("Inside Area for Triangle.");

return . diml . *..dim2 /[2;

class AbstractAreas {
public static void main(String args(]) {
// Figure f = new Figure(10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);

Scanned with CamScanner

Chapter B: Innerivar~~

Figure I.;l'lrl?li v t.]li!l I i Ok
Sl ol

no 'I';}u[q in crear

figret = r;

gystem.out .print ln(".r\r...l b
* Llaref areai))

figret = U,
System.out.printin(®Arecq ig

+ Ligret. areat)});

As the comment 1‘n§1de main() indicates, it is no longer possible to declare objects
of type Figure, since it is now abstract, And, all Subclass%s of Figure must override
area(). To prove this to yourself, try creating a subclass that does not overri
you will recerve a compile-time error.

Although_ 1t 1s not possible to create an object of type Figure, you can create a
reference variable of type Figure. The variable fi gref is declared as a reference to
Figure, which means that it can be used to refer to an object of any class derived from
Figure. As explained, 1t is through superclass reference variables that overridden
methods are resolved at run time.

de area().

| Using final with Inheritance

The keyword final has three uses. First, it can be used to create the equivalent of a
named constant. This use was described in the preceding chapter. The other two uses
of final apply to inheritance. Both are examined here.

Using final to Prevent Overriding

While method overriding is one of Java’s most powerful features, there will be times
when you will want to prevent it from occurring. To disallow a method from being
overridden, specify final as a modifier at the start of its declaration. Methods declared

as final cannot be overridden. The following fragment illustrates final:

class A {

final void meth() {
System.out .println("This 1s a final method.");

class B extends A {
void meth() { // ERROR! Can't override

Scanned with CamScanner

e

L)

& rence }
w Java™ 2: The complete Refere '

§ » scqgall*))
I esm.ont P intInl {l1i1ed
Sy RUSL

)

final, it cannot be overridden in B. If yo,
as ’

atte
declared Mpt 1,

Bocause meth() is i1l result.

pile-time error .\;’ -an sometimes provide a Ferfnrm:.mm enhance
ared as fina L-”“:m because it “knows” they will not be
line calls ;‘;nothnd s called, often lh(-‘]nva compiler ¢
a subclass. ubroutine directly inline with lhf: compiled code of the
bytecode for !ho st :n sy overhead associated with a method call. Inlinj
thus climinating e fl(: bds. Normally, Java rcsol}ms calls to methods dyn
option with final me binding. However, since final methods cannot be

time. This is Cﬂlljg‘f_eg’:l’ve d at compile time. This is called early binding,
call to one can

Using final to Prevent Inheritance

: to prevent a class from being inherited_

Sometimes);0;13‘;;?1 ‘ﬁ?l: finl;l. Declaring a class as final implicit
the class dei--?-.al too. As you might expect, it is illegal to declare
n}letgodts a;Sd ;‘ina’l since an abstract class is in_Complete by itself a

:ulfcl::ses to provide complc?te impler-nentanons_ ;

Here is an example of a final class: ‘

do so, acom

Methods decl .
free tom '
When a small fina

ment: The
overridden ,
4N copy the
C‘f'l“ing Meth
ng is ()nly a
ﬂmi(’ﬂ“y, at Mun
OVerridden'd

compiler is

To do thjs, Precede
ly declares all of jtg
a class as both

nd relies upon its

final class A {
//
}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A
' ey | d

}

As the comments imply, it is illegal for B to inherit A since A is declared as final,

TN AT e T iy e, B L LY S Wi e b

'The Object Class

There is one special class, Object, defined by Java. All other classes

are subclasses of
Object. That is, Object is a superclass of all oth

er classes. This means that a reference

Scanned with CamScanner

W Chapter 8: fnheritance

Cype Object can re(py
““-I.\l‘l“ ol type j efer Lo an objo

i arde
jemented as classes, a variable of typ E)llul any other class, Also, since arrays arf

) O ypoe | 3

““p()hlocl defines the following, .m.”“LIH YJect can aluo refer to any array

» Which means that they are avallable In

Method Purpose

ol clone “ ! 3
Object clot 0 Creales a new object that is the same as

(OB the object being, cloned.
an equals(Object object WY
poolcan equals(Ob ject) Determines whether one object is equal to

anolher,

void finalize() Called before an unused object is

recycled.,
Class getClass()

Oblains the class of an object at run time.
int hashCode()

Returns the hash code associated with the
invoking object.

void notify() Resumes execution of a thread waiting on
the invoking object.

void notify All() Resumes execution of all threads waiting
on the invoking object.

String toString() Returns a string that describes the object.

void wait() Waits on another thread of execution.

void wait(long milliseconds)
void wait(long milliseconds,
int nanoseconds)

The methods getClass(), notify(), notifyAll(), and wait() are declared as final.
Youmay override the others. These methods are described elsewhere in this book.
However, notice two methods now: equals() and toString(). The equals() method
compares the contents of two objects. It returns true if the objects are equivalent, and
false otherwise. The toString() method returns a string that contains a description of

221

the object on which it is called. Also, this method is automatically called when an object
isoutput using println(). Many classes override this method. Doing so allows them to
tailor a description specifically for the types of objects that they create. See Chapter 13

for more information on toString().

Scanned with CamScanner

